A Comparison of Predictive Parameter Estimation using Kalman Filter and Analysis of Variance
نویسندگان
چکیده
The design of a controller significantly improves if internal states of a dynamic control system are predicted. This paper compares the prediction of system states using Kalman filter and a novel approach analysis of variance (ANOVA). Kalman filter has been successfully applied in several applications. A significant advantage of Kalman filter is its ability to use system output to predict the future states. It has been observed that Kalman filter based predictive controller design outperforms many other approaches. An important drawback of such controllers is however that their performances deteriorate in situations where the system states have no correlation with the output. This paper takes a hypothetical model of a helicopter and builds system model using the statespace diagram. The design is implemented using SIMULINK. It has been observed that in situations where the states are dependent on system output, the ANOVA based state prediction gives comparable results with that of Kalman filter based parameter estimation. The ANOVA based parameter prediction, however outperforms Kalman filter based parameter prediction in situations where the output does not directly contribute in a particular state. The research was based on empirical results. Rigorous testing was performed on four internal states to prove that ANOVA based predictive parameter estimation technique outperforms Kalman based parameter estimation in situations where the system internal states is not directly linked with the output. Keywords—Analysis of variance (ANOVA); Kalman controllers; predictive controller
منابع مشابه
Stator Fault Detection in Induction Machines by Parameter Estimation Using Adaptive Kalman Filter
This paper presents a parametric low differential order model, suitable for mathematically analysis for Induction Machines with faulty stator. An adaptive Kalman filter is proposed for recursively estimating the states and parameters of continuous–time model with discrete measurements for fault detection ends. Typical motor faults as interturn short circuit and increased winding resistance ...
متن کاملReal Time Calibration of Strap-down Three-Axis-Magnetometer for Attitude Estimation
Three-axis-magnetometers (TAMs) are widely utilized as a key component of attitude determination subsystems and as such are considered the corner stone of navigation for low Earth orbiting (LEO) space systems. Precise geomagnetic-based navigation demands accurate calibration of the magnetometers. In this regard, a complete online calibration process of TAM is developed in the current research t...
متن کاملIdentification of an Autonomous Underwater Vehicle Dynamic Using Extended Kalman Filter with ARMA Noise Model
In the procedure of designing an underwater vehicle or robot, its maneuverability and controllability must be simulated and tested, before the product is finalized for manufacturing. Since the hydrodynamic forces and moments highly affect the dynamic and maneuverability of the system, they must be estimated with a reasonable accuracy. In this study, hydrodynamic coefficients of an autonomous un...
متن کاملEstimation of LOS Rates for Target Tracking Problems using EKF and UKF Algorithms- a Comparative Study
One of the most important problem in target tracking is Line Of Sight (LOS) rate estimation for using from PN (proportional navigation) guidance law. This paper deals on estimation of position and LOS rates of target with respect to the pursuer from available noisy RF seeker and tracker measurements. Due to many important for exact estimation on tracking problems must target position and Line O...
متن کاملFixed-point FPGA Implementation of a Kalman Filter for Range and Velocity Estimation of Moving Targets
Tracking filters are extensively used within object tracking systems in order to provide consecutive smooth estimations of position and velocity of the object with minimum error. Namely, Kalman filter and its numerous variants are widely known as simple yet effective linear tracking filters in many diverse applications. In this paper, an effective method is proposed for designing and implementa...
متن کامل